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SUMMARY 
The fully elliptic Reynolds-averaged Navier-Stokes equations have been used together with Lam and 
Bremhorst's low-Reynolds-number model, Chen and Patel's two-layer model and a two-point wall function 
method incorporated into the standard k-c model to predict channel flows and a backward-facing step 
flow. These flows enable the evaluation of the performance of different near-wall treatments in flows 
involving streamwise and normal pressure gradients, flows with separation and flows with non-equilibrium 
turbulence characteristics. Direct numerical simulation (DNS) of a channel flow with Re = 3200 further 
provides the detailed budgets of each modelling term of the k and &-transport equations. Comparison of 
model results with DNS data to evaluate the performance of each modelling term is also made in the 
present study. I t  is concluded that the low-Reynolds-number model has wider applicability and performs 
better than the two-layer model and wall function approaches. Comparison with DNS data further shows 
that large discrepancies exist between the DNS budgets and the modelled production and destruction terms 
of the E equation. However, for simple channel flow the discrepancies are similar in magnitude but opposite 
in sign, so they are cancelled by each other. This may explain why, even when employing such an 
inaccurately modelled &-equation, one can still predict satisfactorily some simple turbulent flows. 
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1. INTRODUCTION 

The advancement of large computers has led to the wide use of higher-order turbulence models 
to predict turbulent flows. The most popular class includes the two-equation models in which 
two partial differential equations are used to  describe the development of turbulent kinetic 
energy and of a quantity related to  the turbulence length scale.'-' One such model is the k-E 
eddy viscosity turbulence model, where k represents the turbulent kinetic energy, E represents 
the dissipation rate of turbulent kinetic energy and the eddy viscosity is defined as u, = C,k2/&. 
Using the two quantitites k and E, the turbulence length scale is self-determine from k " 5 / ~  and 
hence, unlike with some simpler models such as the mixing length model, the artificial introdution 
of a turbulence length scale is not necessary. This model has been successfully applied in many 
engineering applications of high-Reynolds-number turbulent flows. However, owing to the 
inexact modelling of the &-transport equation, predictions of near-wall or low-Reynolds-number 
turbulent flows are still difficult and inaccurate unless special near-wall treatments are adopted. 

CCC 027 1-209 1/94/220869-20 
0 1994 by John Wiley & Sons, Ltd. 

Received October 1993 
Revised May I994 



870 S.-Y. JAW AND R. R. HWANC 

When applying the k--E model to solve wall turbulent flows, wall functions are usually adopted 
in the near-wall region. The so-called wall functions relate surface boundary conditions to points 
in the fluid away from the boundaries and thereby avoid the problem of modelling the direct 
influence of viscosity. The validity of this procedure is of course restricted to situations in which 
the Reynolds number is sufficiently high for the viscous effects to be unimportant or where 
universal wall functions are well established. There are a number of instances in which this 
approach has to be abandoned, e.g. turbulent boundary layers at low and transitional Reynolds 
numbers, unsteady and separated flows and the flow over spinning surfaces or surfaces with 
mass or heat transfer. Also, traditional wall functions are probably inappropriate for complex 
three-dimensional flows. 

Predicting turbulent wall shear flows directly from the wall is attractive from a practical 
standpoint. Since the momentum and continuity equations are solved up to the wall, it provides 
the means to include the complexities of complex turbulent flows without invoking wall 
functions. Over the past years many suggestions have been made for the extension of turbulence 
closure models to enable their use at low Reynolds numbers and to describe the flow close 
to a solid wall. These suggestions can be divided into two main categories, namely the 
low-Reynolds-number model and the two-layer model. In a low-Reynolds-number turbulence 
model special damping functions are adopted to achieve the observed reduction of turbulent 
transport quantities very near the wall. Most low-Reynolds-number models are based on the 
same k--E model and differ from one another in the damping functions. Reviews of various 
low-Reynolds-number models can be found in References 4-6. Employing a low-Reynolds- 
number model requires a fine grid system and small time steps, otherwise the numerical 
calculation may not converge. In general it requires more than 60 grid nodes within the boundary 
layer to get a converged solution from an initially guessed flow field. For a practical engineering 
application one would prefer a simpler model which is insensitive to the grid system and 
can be easily applied. The two-layer model was thus proposed. In a two-layer model the 
k--E model is used only in the high-Reynolds-number regions and the viscosity-affected near- 
wall region is resolved with a simpler one-equation model involving a length scale prescrip- 
tion. The rate of energy dissipation and the eddy viscosity can then be expressed as algebraic 
relations of turbulent kinetic energy and the length scale prescription. Since the numerical 
difficulties encountered in low-Reynolds-number models are mainly introduced from the mod- 
elled &-differential equation,' adopting an algebraic &-equation will of course avoid such 
numerical instability problems. Different two-layer models differ from one another in the 
algebraic &-equations or empirical coefficients. A review of two-layer models can be found in 
Reference 8. 

In this study a general control volume' numerical method for the solution of the fully elliptic 
Reynolds-averaged Navier-Stokes equations is used in conjunction with a low-Reynolds-number 
model, a two-layer model and the wall function approach to evaluate the relative merits of 
various treatments of the near-wall flow. In particular, one of the more promising two-equation 
low-Reynolds-number models identified in Reference 4, namely that of Lam and Bremhorst," 
the two-layer model of Chen and Patel," which combines the standard k--E model with the 
one-equation model of Wolfshtein' in the near-wall region, and the two-point wall function 
approach of Chen13 are used to calculate unseparated channel flow and separated backward- 
facing step flow for which experimental data are available from References 14 and 15 respectively. 
Direct numerical simulation (DNS) of a low-Reynolds-number channel flow l 6  further provides 
a complete database to develop and test models. Term-by-term comparisons with the DNS data 
are also made to investigate the performance of each modelling term of the k- and &-transport 
equations. 
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2. GOVERNING EQUATIONS 

Detailed derivations of the Reynolds-averaged Navier-Stokes equations and modelling of the 
k-E turbulence transport equations can be found in Reference 7. Consequently, we outline here 
only the equations that are adopted for the study of near-wall turbulence models in the 
two-dimensional channel flows and backward-facing step flow. 

Reynolds-averaged Navier-Stokes equations 

two-dimensional mean flow in Cartesian co-ordinates are 
The dimensionless Reynolds-averaged equations of continuity and momentum for steady, 

au av 
ax aY 

-- + -~ = 0, 

(2) 
au au a ( 1  au) a ( 1  au) a a aP u - + v - = -  -- + -  -- --(?)--(E)-- 
ax aY ax R e a x  a y  R e a Y  ax aY ax ' 

Here (U, V )  are the mean velocity components and (u, v )  are the fluctuating velocity components 
in the ( X ,  Y)-directions respectively, P is the pressure and Re is the flow Reynolds number. The 
bar (-) over a quantity denotes the ensemble average. 

Turbulence models 

In the present study the eddy viscosity k-E turbulence model is adopted, i.e. the Reynolds 
stresses are related to the corresponding mean rates of strain through the Boussinesq eddy 
viscosity model : 

Here u,, the isotropic eddy viscosity, is related to the turbulence kinetic energy k, its rate of 
dissipation E and a damping function f, by u, = C,  f,k2/c,  C ,  is a constant, C ,  = 0.09. Hence for 
two-dimensional flow 

- au 
ax -UU = 20, - - ik, 

- u v = u ,  - + - .  
- (:I 3 
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The governing equation (1H3) then become 

2 a k  aP 
a Y  a ( t i : )  3ax ax' 

+-  u -  

These equations can be solved for (V, V ,  P) when the k--E turbulence model is employed for the 
eddy viscosity distribution. Here k and E are obtained from the transport equations 

(7) 
Dk d 
~t ax 

where 

9 = u1[2(3 + 2 ( 3  + r; + 31 
is the rate of production of k, C, = 0-09, C, = 0.07, C,, = 1.44 and Cr2 = 1.92 are the turbulence 
model coefficients and f,, f, and f2 are damping functions associated with low-Reynolds-number 
turbulence models. For the standard k--E model these damping functions are set to be unity. 
Various near-wall treatments are discussed below. 

In the wall function approach the first near-wall nodes are placed within the fully turbulent 
region. The transport equations (7) and (8) are solved, with f ,  = f, = f2 = 1, only in the region 
beyond some distance from the wall. The velocity components and corresponding turbulence 
parameters between the wall and the first near-wall nodes are usually obtained from separate 
analysis of the flow in the sublayer and buffer region using the logarithmic law of the wall and 
the associated equilibrium relations: 
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or 

up’ = Yp’. 

k,’ = 0.1(Yp’)2, (13) 

&p’ = 0.2, (14) 
- 
UV,’ = 0.3kp’, for Yp’ < 10. 

Here Yp’ is defined as Yp’ = U,Yp/u, Y, is the dimensional normal distance from the wall, 
U t  = (?w/p)i’2 is the friction velocity, T, is the wall shear stress, K = 0.418 is the von Karman 
constant and E = 9. The two-point wall function approachi3 is adopted, i.e. two near-wall grid 
points are placed within the fully turbulent region which explicitly satisfy equation (9) or (12). 
An iterative solution of these equations then provides the value of U, and Up, required to 
establish the boundary conditions, without any analysis of the flow in the sublayer and buffer 
region. 

For low-Reynolds-number models damping functions have to be specified to approximate the 
observed reduction of turbulent quantities in the near-wall region. In the model of Lam and 
Bremhorst O they are 

f, = [l - e~p(-0*016R,)]~(l + 195/RT), (15) 

f2 = 1 - exp(-R$), (17) 

where R, and RT are the turbulent Reynolds numbers 

R, = Rek’I’Y, R, = (k2/&)Re. 

The constants in (15) and (16) are somewhat different from those quoted by Lam and 
Bremhorst,” the values used here being those recommended by Rodi.” Note that the damping 
functions considered above involve two turbulent Reynolds numbers R ,  and R T ,  which depend 
only on the local turbulence intensity k. In particular, the wall shear stress T, is not involved. 
Both R, and RT remain well defined in regions of flow reversal. Consequently, they can be 
applied in flows with separation. 

In the two-layer approach the flow domain is divided into two regions. Region I includes the 
sublayer, the buffer layer and part of the fully turbulent layer. A one-equation model is employed 
in this region to count the wall proximity effects, whereas the standard k--E model is used in 
region 11. In the one-equation model only the turbulent kinetic energy is solved from a transport 
equation. The rate of energy dissipation in this region is specified by 

and the eddy viscosity is obtained from 
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where the length scales I, and I, contain the necessary damping effects in the near-wall region 
in terms of the turbulent Reynolds number R,. For the one-equation model of Wolfshtein,'2 
selected by Chen and Patel' ' in their two-layer model, I, and I ,  are specified as 

Note that both I, and I, become linear and approach C,y with increasing distance from the wall. 
Here C ,  is given by 

to ensure a smooth eddy viscosity distribution at the junction of regions I and 11. A, and A, 
are determined' ' somewhat differently from those reported in References 12 and 18. A, = 2C, 
is assigned so as to recover the proper asymptotic behaviour E = (20k/y2) in the sublayer and 
A, = 70 is determined from a numerical test to match the logarithmic law in the case of a flat 
plate boundary layer. In region 11, beyond the near-wall layer, the standard k-E model is 
employed to calculate the velocity field as well as the eddy viscosity. The matching criterion 
between the one-equation and two-equation models is specified along a preselected grid line 
where the minimum R, is of the order of 250, so that the damping effects are negligible. This 
ensures a smooth eddy viscosity distribution across the match boundary. 

To solve the fully elliptic Reynolds-averaged Navier-Stokes equations (4 )-(8), a computer code 
written by the finite volume method' with a staggered grid SIMPLER algorithm is used in the 
present study. The system of algebraic difference equations is solved by a line iteration method 
with alternating directions. The convergence criterion is specified as the relative difference of 
every dependent variable between time steps being smaller than 5 x 

3. PREDICTION OF TWO-DIMENSIONAL CHANNEL FLOW 

Consider a turbulent flow in a two-dimensional channel with dimensionless channel halfwidth 
and mean inlet velocity both equatl to unit. Computation is perfomed in the domain of width 
1 x length 24. The channel halfwidth and mean inlet velocity are chosen as the length scale and 
velocity scale respectively. Based on these scales, the channel flow Reynolds number is 65,600, 
the same as that of Telbany and Reynolds' e~per iment . '~  

To avoid a large computational burden in calculating the flow development, the computation 
is started from the channel cross-section where the viscous layer thickness has developed to 85% 
of 'the channel halfwidth. In other words, the inlet condition is set at the cross-section where 
the viscous layer thickness 6 = 0.85. The turbulent channel flow is considered as fully developed 
when the viscous layer has grown to be equal to the channel halfwidth of 6 = 1, which occurs 
at the locatin X = 9.'' The computation domain is extended down to the location X = 24 and 
experimental data are given at X = 22. 

Four boundary conditions for each governing equation (4H8) are required to make the 
problem well posed. The mean inlet velocity Ui is determined from the power law distribution 

ui I - Y  1 - y 1/7 

UCi - = (4)111 = (=) for 1 - Y < 0.85, 

Ui = Uci = 1.1 for 1 - Y > 0.85, 

where UCi is the centreline inlet velocity. Note that the origin of the Y-co-ordinate is set at the 
centreline of the channel, while the boundary layer thickness is calculated from the wall 
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boundary, i.e. Y =  1. The inlet.condition of turbulent kinetic energy, ki ,  is determined from the 
experimental data of Telbany and Reynolds14 measured in the fully developed region: 

ki = 0.0099 - O.O13Y+ 04057Y2 + 0.0001 P. 

For the rate of kinetic energy dissipation, zi is taken to be 

Note that E cannot be measured by experiment. It is estimated from dimensional analysis by 
observing that the units of E are equal to the units of k divided by a length scale. Several different 
initial conditions for k and E were tested and it was found that the predicted results were 
insensitive to these conditions. Since the outlet section is in the fully developed region, the 
gradients of all variables U ,  C: k and E in the flow direction, a/dX, are zero. On the centreline 
all variables satisfy the symmetric boundary condition d/d Y = 0. Along the wall differnt 
treatments have to be used for different models. In the wall function approach the flow 
characteristics between the first grid points and the wall are determined either from equation 
(9H11) or from equation (12H14), depending on their dimensionless normal distance to the 
wall. For the low-Reynolds-number model and the two-layer model the boundary conditions 
are specified on the wall; hence U ,  V and k are zero owing to the no-slip condition. For E the 
wall condition is specified as dE/aY = 0 for the low-Reynolds-number model. The two-layer 
model does not need a wall condition for E ,  since an algebraic equation is used in the near-wall 
layer. 

A non-uniform grid system of 42 x 24 is used for the wall function method. Since the 
low-Reynolds-number model and the two-layer model require a finer grid system, 62 x 49 grid 
points are used for these two models. The computation is carried out with a time-marching 
scheme. Between time steps the dimensionless dependent variables are checked. If the relative 
difference of these variables, i.e. U ,  the 
solution is considered converged and the calculation is terminated. In the two-layer model 
calculation satisfactory convergence was obtained in less than 200 time steps. The low-Reynolds- 
number model was incorporated after the two-layer solution had converged in order to accelerate 
convergence and save computing time. Another 200 iterations with a smaller time step are 
required to meet the convergence criterion. 

Figure 1 compares the predicted mean velocity profiles with the experimental data of Telbany 
and R e y n o l d ~ ' ~  at three different locations. One is in the developing region, X = 3.5, and the 
other two are in the fully developed region, X = 13.5 and 22, as shown in Figures l(a)-l(c) 
respectively. It is clear that all three approaches yield almost identical mean velocity profiles, 
presumably owing to the use of the same turbulence model for the flow outside the near-wall 
region. Figures 2(aHd) compare the predicted turbulent kinetic energy and Reynolds stress 
distributions with experimental data at the location X = 22. These calculated turbulence 
intensities are somewhat more sensitive to the near-wall treatments. The low-Reynolds-number 
model and the two-layer model yield identical profiles except in the near-wall region, while the 
wall function approach presents larger differences from the former two models. Note also that 
larger deviations exist between the calculate Reynods stresses and the experimental data, since 
the simple Boussinesq eddy viscosity approximation was adopted. To improve the Reynolds 
stress prediction, differential stress equations have to be employed.' Figure 3 shows the predicted 
production and dissipation of the turbulent kinetic energy budget. They are opposite in sign 
but about equal in magnitude, so the fully developed channel flow is in an equilibrium status. 

k and E ,  at all nodal points are smaller than 5 x 
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Figure 1. Velocity profiles of channel flows at (a) X = 3.5, (b) X = 13.5 and (c) X = 22 

Since the wall function approach is derived under the assumption that the turbulent flow is 
parallel to the wall and in an equilibrium status,13 predicting the mean flow of a non-separated, 
equilibrium turbulent flow by the wall function approach is adequate. This is confirmed in this 
study by observing that all the profiles, including those obtained from the wall function, fit fairly 
well with the experimental data. 

As noted earlier, direct numerical simulations of turbulent flows provide a complete database 
to develop and test turbulence models. In order to investigate the performance of each modelling 
term of the k- and &-transport equations, the low-Reynolds-number channel flow simulated by 
DNS16 is also computed. The simulated flow fields are for a channel flow at a Reynolds number 
Re, = lt ,6/u = 180 based on the kinematic viscosity u, wall shear velocity u, and channel 
halfwidth 6. This corresponds to a Reynolds number of 3200 based on the mean centreline 
velocity and channel halfwidth 6 .  A grid system of 62 x 49 is used for the low-Reynolds-number 
model and the two-layer model. The wall function approximation was not performed in this 
category, since the whole computational domain is in the wall-function-dominated region 
u&v = 6' = 180 c 400. Therefore no individual modelling distribution is available. A similar 
problem was encountered in presenting the distribution of the modelled &-equation of the 
two-layer model. Since the whole computational domain is within the algebraic-c-equation- 
dominated region R,  < 250, no differential &-equation is adopted in the two-layer model and 
hence no individual distribution of the modelled &-equation is available. Only distributions of 
the k-equation can be presented for the two-layer model. 
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Figure 2. Turbulence characteristics of channel flow at X = 22: (a) turbulent kinetic energy; (b) Reynolds stress 
(?)”’; (c) Reynolds stress (I?)”~; (d) Reynolds stress I 

Figure 3 

Similar boundary conditions to those stated above are used, except that the inlet velocity 
profile is modified in accordance with this Reynolds number as 

Ui = UCi = 1 for 1 - Y > 085.  
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Figure 4. Budgets of k-transport equation: (a) Viscous diffusion; (b) turbulent diffusion; (c) dissipation; (d) production 

The inlet condition for k and E are assumed to be the same as those of high-Reynolds-number 
channel flow. Different inlet conditions were also tested and it was confirmed again that for 
equilibrium turbulent flows the predicted results were insensitive to the k, E inlet conditions.' 

Figure 4 compares the DNS budgets of exact turbulent kinetic energy with modelled k-budgets. 
Figures 4(a) and 4(b) show that for viscous diffusion, 

turbulent diffusion, 
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both models yield similar result to the DNS data, but the low-Reynolds-number model predicts 
larger diffusion effects and is closer to the DNS data. Figure 4(c) shows the dissipation budget 
of k. It is found that the two-layer model overpredicts its peak value, &(peak) = -0.195, while 
the low-Reynolds-number model predicts &(peak) = -0-16, closer to the DNS data, &(peak) = 
-0-162. Both profiles shift their peak position from the wall to about Y+ = 16, the location of 
the second peak of the DNS data. It is interesting to point out that the dissipation budget 
deduced from experimental data of a flat plate boundary layer4 also presents such a shift, but 
with a peak of 0.2, which is much closer to the two-layer profile. This is anticipated, since the 
model coefficients of the two-layer model were adjusted to fit the experimental data of a flat 
plate boundary layer. Figure 4(d) shows that for the production term 

both the low-Reynolds-number model and the two-layer model overpredict their peak values, 
with P(peak) = 0.24 for the low-Reynolds-number model and P(peak) = 0.25 for the two-layer 
model. The DNS peak value is about P(peak) = 0.2. 

It should be pointed out that in the k-equation only the turbulent diffusion term requires a 
model. From Figure 4(b) it is known that the modelled diffusion term fits quite well with the 
DNS data. Hence the k-equation is considered to be relatively accurate, so that the prediction 
of k directly from the wall can be achieved without any modification. 

Figure 5 compares the budgets of the modelled &-equation with DNS data. As men- 
tioned above, no &-budgets of the two-layer model are available, so only budgets of the low- 
Reynolds-number model are compared. Figures 5(a) and 5(b) present the distributions of viscous 
diffusion, 

and turbulent diffusion, 

of E versus DNS data. It is clear that for Y +  > 18 the modelled diffusion terms match correctly 
with DNS data. For Y+ < 18 an obvious disagreement exists in the turbulent diffusion term, 
especially in the region close to the wall, Y +  < 10. However, the disagreement is small compared 
with the errors in other terms, since the magnitude of diffusion is about an order smaller than 
other modelling terms, as shown in the following figures. Figure 5(c) shows that the modelled 
destruction of E, 
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Figure 5. Budgets of &-transport equation: (a) viscous diffusion; (b) turbulent diffusion; (c) destruction; (d) production 
versus triple correlation; (e) production versus exact production; (f) sum of production and destruction versus sum 

of exact production, triple correlation and destruction (see text for expressions) 

is overpredicted even though the trend of the profile is correct. Figures yd)  and 5(e) plot the 
modelled production term 

with respect to the triple-correlation 
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and the exact production term 

respectively to see whether the modelled production comes from either of these two terms. From 
these two figures it is known that the modelled production fits neither of these two terms. 
However, if we plot the summation of modelled production and destruction with respect to the 
summation of exact production, triple-correlation and destruction terms, the curve fits much 
better with DNS data, as shown in Figure 5(9. The summation of errors is an order of magnitude 
smaller than the error in each individual term. This may explain why, even when using such an 
inaccurately modelled &-equation, one can still predict correctly some simple turbulent flows. 
Since the modelled production and destruction terms yield errors with similar magnitude but 
opposite in sign, their errors are cancelled by each other. This may not be true, however, for 
more complex flows. In that case, using the k--E model may cause greater error in predicting 
turbulent flows. 

4. PREDICTION O F  BACKWARD-FACING STEP FLOW 

In this section we consider a turbulent flow past a backward-facing step. This flow has been 
extensively measured, since it is considered by many researchers and engineers as a fundamental 
configuration of internal flows. I t  provides turbulence models with additional test domain, since 
the flow separates at  the step and reattaches downstream. The flow then recirculates behind the 
step. Prediction of this flow can thus enable one to examine the model capability in predicting 
not only the distribution of turbulence transport quantities but also the mean velocity distribu- 
tions. The wall function proposed in equation (9H14) is known not to be appropriate for use 
near the points of separation and reattachment, since its basic assumptions conflict with the 
flow characteristics in those regions. The use of the wall function in predicting backward-facing 
step flow is mainly due to engineering simplification. Low-Reynolds-number models and 
two-layer models are applied directly up to the wall without adopting any approximation and 
hence are anticipated to perform better. The following is an attempt to examine the validity of 
the low-Reynolds-number model, the two-layer model and the wall function approach in 
predicting flow separation as it passes the backward-facing step. 

Consider a two-dimensional channel flow past a step as shown in Figure 6. The dimensionless 
downstream channel half-height is W = 1, the upstream half-height is H = f and the step height 
is f. W is chosen as the reference length scale, while the reference velocity scale is the mean inlet 

D/////////////,////////////,, P 
I 
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velocity [I,. Based on these scales, the Reynolds number is 30,210 and the expansion ratio, 
defined as W / H ,  is 1.5, equivalent to the experimental set-up of Smyth.” It is known from 
experiments of Abott and Kline” that if the expansion ratio is equal to or less than 1.5, the 
turbulent flow is steady and the separation is symmetric in a symmetrical backward-facing step. 
Since the expansion ratio of the selected experiment is equal to 1.5, the flow pattern, according 
to Smyth,” is symmetric to the centreline. Therefore only the upper half of the channel with 
the backward-facing step is considered in this numerical calculation. As shown in Figure 6, the 
distance between the inlet and the step is taken to be 1.5 and the outlet is 12 units downstream 
from the step. Cartesian co-ordinates are used with the X-axis directed along the centreline and 
the origin at the step. 

For the elliptic-type partial differential equations (4H8) to be well posed, suitably boundary 
conditions should be specified. Referring to Figure 6, these are specified as follows. 

( I )  For the inlet A-B. The inlet profiles of U ,  k and E are specified at X = - 1.5 such that the 
predicted results fit Smyth’s experimental data of U and (Z)’’’ at X = 0. Several inlet profiles 
were examined. The following profiles are selected for all the calculations: 

Ui = 1.17(1 - Y)’”, 

k i  = 0.023 + 0.19Y - 0799Y’ + 1.335Y3, 

A one-seventh power law velocity distribution is used as the inlet velocity boundary condition. 
A coefficient of 1.17 is multiplied in the velocity distribution since the maximum velocity is 1.17 
times larger than the mean duct entry velocity. The k-profile was not provided by the experiment. 
It is determined empirically so that the predicted U- and (Z)’/’-profiles at the step entrance 
match closely with the experimental data. Finally, E is estimated from dimensional analysis again. 

(2) For the outlet E-F. Since the outlet E-F is sufficiently far downstream of the step, it is 
assumed that the flow is fully developed at the outlet. Thus the fully developed boundary 
condition d/dX = 0 is used for the variable [I, V ,  k and E.  

(3) For the solid walls B-C, C-D and D-E. Similar wall conditions to those state in Section 
3 are adopted. However, when applying the low-Reynolds-number model and the two-layer 
model in the step corner region, i.e. the junction between walls C D  and DF, two different length 
scales were tested. One considers the damping effect induced by the nearest wall only, i.e. chooses 
the minimum distance measured from the two walls. The other then chooses the mean length 
scale, i.e. the root mean square of distances to both walls, df = [(dX)’ + (dY)2]0.5, with dX and 
dY being the normal distances measured to walls CD and D F  respectively. Comparing the 
computational results, i t  is found that most of the flow fields are similar, except in the corner 
region, where there is a second separation bubble present when using the minimum length scale 
in the low-Reynolds-number model. For the two-layer model the second separation bubble is 
present for both length scales, but with the shorter length scale adopted, a larger second 
separation bubble is predicted. It seems that using the shorter length scale can give a more 
detailed flow structure and hence it is adopted in the present study. 

(4) Along the symmetric centreline A-F. The symmetric boundary condition d/dY = 0 is used 
for all the variables. 

Grid systems of 63 x 32 for the wall function approach and 68 x 36 for the low-Reynolds- 
number model and the two-layer model are used in the numerical calculations. Dense grids are 
placed near the solid wall where the velocity gradient is steeper and near the step where the 
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flow is expected to separate. The computation is also carried out with a time-marching scheme. 
The convergence criterion is set the same as in the channel flows. 

Predicted results are compared with Smyth’s’ experiments. The profiles at the step expansion 
section are checked first. Since the flow is relatively sensitive to the upstream k, E boundary 
conditions, adjustment of these two boundary conditions so that the predicted profiles match 
with the experimental data at the step expansion, X = 0, is necessary. Otherwise comparison of 
the profiles at downstream sections with experimental data would be meaningless. Figure 7 
shows that all three turbulence models predict fairly close U- and (z)1’2-profiles at the step 
entrance, X = 0, and thus comparison at downstream sections is meaningful. 

Figure 8 shows the streamfunction contours predicted from the low-Reynolds-number model. 
This plot gives the upper half of the turbulent flow past a symmetrical backward-facting step. 
The rectangular block in the upper left corner of the figure is the channel step. Note that right 
on the step corner there is a tiny secondary separation bubble. A similar phenomenon was also 
observed by Rodi.” Checking the computational results, it is found that the predicted 
reattachment length extends to about X = 1.6, 2.4 and 1.0 for the low-Reynolds-number model, 
the two-layer model and the wall function approach respectively, while the experimental data 
claim that X = 1.5. The predicted reattachment length of the low-Reynolds-number model is 
much closer to the experimental data. 

0.2 

ai ::: - 1  5 Xaardiruv 

Figure 8. Streamfunction contours of low-Reynolds-number model 
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Figure 9. U-velocity profiles of backward-facing step Row at (a) X = 1 2  and (b) X = 4 

Figures 9-13 present comparisons of the mean velocity U ,  the turbulent kinetic energy k and 
the Reynolds stresses (?)'I2, (7)''' and ilii respectively at two different cross-sections. One is 
within the recirculation zone, X = 1.2, and the other is downstream of the recirculation zone, 
X = 4. For the velocity profiles, as shown in Figure 9, all three turbulence models predict similar 
results in the centreline region. Close to the wall the velocity profiles predicted by different 
near-wall treatments vary significantly, especially within the recirculation zone. In Figure 9(a) 
the near-wall velocities predicted by the low-Reynolds-number model and the two-layer model 
are negative, while those predicted by the wall function approach have become positive. The 
experimental data show that this section is still within the recirculatin zone; the near-wall velocity 
is negative and is consistent with the results of the low-Reynolds-number model and the two-layer 
model. However, the two-layer model overpredicts the reverse flow velocity and the reattachment 
length. The two-layer model seems to be sensitive to the adverse pressure gradients of separated 
flows. Remember that both the low-Reynolds-number model and the two-layer model predict 
almost identical profiles for a non-separated channel flow, but only the former predicts 
satisfactory the separated flow. In general the low-Reynods-number model predicts much better 
results than the two-layer model and the wall function approach. 

Turbulent kinetic energy and Reynolds stress profiles are presented in Figures 1&13. From 
these figures it is known that the wall function approach predicts larger turbulence insensities 
and Reynolds stresses in the separation region. These stronger turbulence quantities will generate 
a stronger eddy viscosity and hence hamper the development of the separation region. Thus the 
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Figure 10. Turbulent kinetic energy profiles of backward-facing step flow at (a) X = 1.2 and (b) X = 4 
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Figure 13. Reynolds stress iii at (a) X = 1.2 and (b) X = 4 

recirculation length predicted by the wall function approach is too short. In contrast, the 
two-layer model generally predicts smaller turbulence quantities, so its predicted recirculation 
length is too long. 

Larger deviations are usually found in Reynolds stress distributions, especially the (7)”’- and 
uo-profiles, since the simple Boussinesq eddy viscosity model was adopted. Predicted (3)”’- 
profiles are much closer to experimental data, since the inlet conditions are chosen so that the 
predicted (3)”’ match correctly with experimental data at the step entrance. 

- 
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Figure 14. Production versus dissipation at (a) X = 1.2 and (b) X = 4 

The production and dissipation budgets of turbulent kinetic energy are plotted in Figure 14. 
It is found that within the recirculation zone, as shown in Figure 14(a), the production outweighs 
the dissipation, so the turbulent flow is not in equilibrium. Downstream of the recirculation 
zone, Figure 14(b), the production and dissipation tend to be equal and the turbulent flow is 
close to equilibrium. These results are helpful in explaining the inadequacy of applying wall 
functions in separation flow calculation. Since separation flow is neither parallel to the wall nor 
in an equilibrium status, employing the wall function approach in this region will of course 
introduce errors. In addition, the non-equilibrium status also induces the flow to be sensitive to 
the inlet boundary conditions.’ Hence checking of the entrance profiles is necessary when solving 
such flows. 

5.  CONCLUDING REMARKS 

The finite volume numerical method for the solution of the fully elliptic Reynolds-averaged 
Navier-Stokes equations have been used in conjunction with Lam and Bremhorst’s low- 
Reynolds-number model, Chen and Patel’s two-layer model and the two-point wall function 
method to evaluate the relative merits of various near-wall treatments in predicting wall turbulent 
flows. The selected test flows are the two-dimensional channel flows and the separated 
backward-facing step flow. These flows enable the evaluation of the performance of various 
near-wall treatments in flows with normal and streamwise pressure gradients, flow with 
separation and flow with non-equilibrium turbulence characteristics. Since complex turbulent 
flows usually bear such characteristics, predicting these flows will help in determining which 
model is more adequate to be employed in predicting complex turbulent flows. The results 
indicate that the wall function approach is too simplified and is inadequate in predicting complex 
flows. Models that can solve turbulent flows all the way to the wall, such as the low-Reynolds- 
number model and the two-layer model, are preferred. From the computation results it is found 
that only the low-Reynolds-number model predicts satisfactory all the flows considered. In 
general the low-Reynolds-number model has wider applicability and predicts better results than 
the wall function approach and the two-layer model. Nevertheless, when employing such a 
model, one may encounter various numerical difficulties such as grid sensitivity, slow con- 
vergence, etc. The present numerical scheme did not experience any special difficulty with the 
low-Reynolds-number model, since the latter was incorporated after the two-layer solution had 
converged. However, the computation did break down if the model was employed from the 
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beginning of the solution procedure. The numerical instability problems were not investigated 
in enough detail to give a rigorous explanation, since that was not the purpose of the present 
study. 

For practical engineering applications a simpler model which has few numerical instability 
problems and is insensitive to the grid system is preferred. The idea of the two-layer approach 
was thus proposed. The two-layer approach is quite insensitive to the grid spacing and the 
number of grid points in the inner layer and to the location of the match boundary between the 
one- and two-equation models of the inner and outer layers. Its relative simplicity is attractive, 
because additional modifications and generalizations for more complex flows can be easily made. 
However, this model seems to be sensitive to the adverse pressure gradients of separated flows. 
Its performance in predicting backward-facing step flow is not as good as that of the low- 
Reynolds-number model. 

Direct numerical simulation of a low-Reynolds-number channel flow provides the detailed 
budgets of each modelling term of the turbulent transport equations. Comparing the model 
results with DNS data can clearly manifest the performance of each modelling term of the 
turbulent transport equations. It is found that the modelled k-equation, which requires only one 
modelling term for the turbulent diffusion, fits quite well with DNS data and is considered to 
be relatively accurate. The modelled &-equation, especially its production and destruction terms, 
deviates from DNS data significantly. Fortunately, the deviations of these two terms are similar 
in magnitude but opposite in sign. They are therefore cancelled by each other. This explains 
why, even when employing such an inaccurately modelled &-equation, one can still predict 
satisfactorily some simple turbulent flows. 
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